skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cong, Xiaomei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wearable devices for continuous health monitoring in humans are constantly evolving, yet the signal quality may be improved by optimizing electrode placement. While the commonly used locations to measure electrodermal activity (EDA) are at the fingers or the wrist, alternative locations, such as the torso, need to be considered when applying an integrated multimodal approach of concurrently recording multiple bio-signals, such as the monitoring of visceral pain symptoms like those related to irritable bowel syndrome (IBS). This study aims to quantitatively determine the EDA signal quality at four torso locations (mid-chest, upper abdomen, lower back, and mid-back) in comparison to EDA signals recorded from the fingers. Concurrent EDA signals from five body locations were collected from twenty healthy participants as they completed a Stroop Task and a Cold Pressor task that elicited salient autonomic responses. Mean skin conductance (meanSCL), non-specific skin conductance responses (NS.SCRs), and sympathetic response (TVSymp) were derived from the torso EDA signals and compared with signals from the fingers. Notably, TVSymp recorded from the mid-chest location showed significant changes between baseline and Stroop phase, consistent with the TVSymp recorded from the fingers. A high correlation (0.77–0.83) was also identified between TVSymp recorded from the fingers and three torso locations: mid-chest, upper abdomen, and lower back locations. While the fingertips remain the optimal site for EDA measurement, the mid-chest exhibited the strongest potential as an alternative recording site, with the upper abdomen and lower back also demonstrating promising results. These findings suggest that torso-based EDA measurements have the potential to provide reliable measurement of sympathetic neural activities and may be incorporated into a wearable belt system for multimodal monitoring. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. null (Ed.)
    We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful “illusion” (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful. 
    more » « less